
where ~ix, ~ly, ~iz are the dimensions of the object of thermostating in the directions of 
the axes of coordinates; to, t2 are the temperatures of the light window and of the chamber, 
respectively, obtained at the preceding stages after the problems (14)-(19) and (20)-(23) 
had been solved. 

In accordance with (25) the object takes part in symmetric heat exchange with the light 
windows along the z-axis (25a), and along the other two axes it is in ideal contact with the 
chamber (25b). Condition (25c) closes the system. 

The presented example shows that the described approach makes it possible from the same 
positions to arrive at the synthesis of the design of thermostats for different objects. 

A further task is to work out actual algorithms for choosing the design parameters satis- 
fying the requirements of the technical specification. 

NOTATION 

ti, tj, temperature of the i-th and j-th element, respectively, of the thermostat; tvi, 
tsi , mean volumetric and mean surface temperature, respectively, of the i-th element of the 
thermostat; Ci, ci, Pi, hi, full and specific heat capacity, density, and thermal conducti- 
vity, respectively, of the i-th element of the thermostat; qvi, qsi, specific power of the 
volumetric and surface heat sources, respectively; ~, time; Si(r), running area of the iso- 
thermal surface; r, generalized coordinate; oij, thermal conductivity between the i-th and 
j-th elements of the thermostat; avi, volumetric heat-transfer coefficient with the inner 
convective medium; ~N2, heat-transfer coefficient of the element of the thermostat with the 
environment; Uvi , temperature of the inner convective medium; qsi,:, qsi,2, specific power of 
the surface heat sources on the inner and outer surface, respectively, of the i-th jacket; 
Pi, full power of the heat sources in the i-th element; i, j, subscripts denoting the ordi- 
nal numbers of the elements of the thermostat. 
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PARAMETRIC METHOD FOR THE SOLUTION OF AN ILL-POSED INVERSE 

HEAT-CONDUCTION PROBLEM IN APPLICATION TO THE OPTIMIZATION 

OF THERMAL REGIMES 

V. M. Vigak and V. L. Fal'kovskii UDC 517.977.56:536.12 

A method is proposed for the stable approximate solution of an ill-posed 
inverse heat-conduction problem, to which the investigated problem of op- 
timal control of the thermal regime of a rigid body is reduced. 

The timeliness of nondestructive testing problems and the difficulties of reconstructing 
the temperature field and the thermophysical characteristics of an object from experimental 
results have fostered the rapid development of identification methods in heat conduction 
[1-3]. It has been shown [4] that a number of problems in the control of the thermal regime 
of a rigid body can also be solved by reducing them to an inverse heat-conduction problem 
(IHCP). In the latter case, as a rule, certain characteristic (thermal or thermomechanical) 
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Fig. 2. Stability of the solution 
(ii), (12) according to the values 
of the parameters El, 2. i) Solution 
of Eq. (13) for ~ = 61 = ~- 

variables of the process are specified, and the object of solving the problem is to determine 
the conditions under which the temperature field corresponding to such characteristics can 
be established. In the present study, elaborating the results set forth in [5], we propose 
a method that can be used to solve one such control problem for a one-dimensional temperature 
regime. 

A number of processes of heat treatment of materials require that a certain surface x = 
k, often inaccessible for direct treatment, be maintained at a definite temperature ~(~), 
which is specified within allowed technological error limits AT: 

max IT(k, ~ ) - - m ( ~ ) I ~ A r .  
�9 e(0.~0] " (19 

Suppose  t h a t  t h e  h e a t - t r e a t m e n t  p r o c e s s  i s  c o n t r o l l e d  by c o n v e c t i v e  h e a t  t r a n s f e r  on t h e  
o p p o s i t e  s u r f a c e  x = 1: 

OT (1, ~) 
+ H I T ( l ,  ~ ) - -  u(g)] = 0. (2 )  

Ox 

The p r ob l e m i s  t o  c o n t r o l  t h e  o n e - d i m e n s i o n a l  t e m p e r a t u r e  r eg im e  T ( x ,  ~) in  a s p e c i f i e d  t i m e  
i n t e r v a l  ~ 6 [ 0 ,  T 0] by means o f  t h e  t e m p e r a t u r e  u ( ~ )  o f  t h e  warming medium so as  t o  g u a r a n t e e  
t h e  h e a t i n g  p e r f o r m a n c e  f a c t o r  ( o p t i m a l i t y  c r i t e r i o n )  ( 1 ) .  The t e m p e r a t u r e  f i e l d  in  t h e  body 
in  t h i s  c a s e  s a t i s f i e s  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  

O2T + ] OT OT (] 0, 1, 2), (3 )  
ax~ x Ox a~ 

.~>0,  xC(k,  1), k =  r---L C[O, 1), 
l'2 

the initial condition 
T (x, O) = f (x), x E [k, 11, (4) 

and the boundary condition 

and the control function u(~) 

OT (k, "0 
- , ( ~ ) ,  ( 5 )  

Ox 

is subjected to the constraints 
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t l ( ~ ) ~ u ( ~ ) ~ t , ( ~ ) .  (6)  

Here j = 0, 1, 2 f o r  a p l a t e  (k = 0) ,  a c y l i n d e r ,  and a sphe re ,  r e s p e c t i v e l y .  

We replace the real heating performance condition (i) by the idealized version 

T(k, T) = ~(*). (7) 

Then, f o l l o w i n g  the  p r o c e d u r e  deve loped  in [4] and de te rmin ing  t he  t e m p e r a t u r e  f i e l d  T(x,  z) 
satisfying the IHCP (3)-(5), (7), from the heat-transfer condition (2) we readily find a 
control function u(~) that will ensure the satisfaction of condition (7), i.e., the objective 
function (i) for A T = 0. 

The IHCP (3)-(5), (7), which belongs to the class of boundary-value [I] or outer [3] 
IHCP's, is known to be an ill-posed problem owing to the absence of a bounded iverse oper- 
ator [6]. We note that the exact value of the function ~(~) in the given problem can belong 
to the set of functions that are unrealizable under the given boundary conditions (4), (5). 

Condition (7) has been modified somewhat [5] in order to regularize the solution of such 
an IHCP. However, for sufficiently small values of the regularization parameter the ampli- 
tude of the oscillations of this solution grows considerably, and this can violate the con- 
trol constraints (6). With the latter consideration in mind, we alter both boundary condi- 
tions specified on the treated surface, as follows: 

T (k, T) + exR~ (T) = ~ (x), (8)  

OT (k, ~) 
+ e2R, (T) = ,  (*), 

Ox (9) 

where the operators R i (i = i, 2) can have the form [5] 

a) R(T)=T(1 ,  "O--f(1); 

b) R(T)= OT(t, ~) . 
J 

Ox 

(lO) 

c) R ( T ) =  1+1 .i xi[T(x ' z)--f(x)ldx. 
l_k~+] . 

h 

It can be verified that the problem (3), (4),(8), (9) has a unique solution [4, 7]. The 
Laplace integral transform [8, 9] is used to represent the solution in the form [4] 

T,(x, ~)-- Or ,([~R(T--B)T~(x' B)+*R(T- -B)T2(x '  B)]dB + .f~if(~)Ts(x, ~, T)d~. (11) 
0 k 

Here the  form of  the  f u n c t i o n s  T 1 , 2 , a ,  ~ ,  and SR depends on the  cho ice  of  the  o p e r a t o r s  R i 
in c o n d i t i o n s  (8) and (9 ) .  For example,  in the  case  of  a p l a t e  ( j  = k = 0) wi th  the  opera -  
t o r s  R 1 and R 2 chosen to  be of  the  t ype  (10a)  and (10b) ,  r e s p e c t i v e l y ,  t he  i n f l u e n c e  func-  
t i o n s  are 

T~(x, T) 1 ~ 4 R e ~  c h ~ x + 8 2 c h ~ ( 1 - - x )  exp 2 
= _ _  (~) ,  

1 + el el -[- e2 ~=I ~ sh ~ 

T2(x, "0-- x(1 + q ) - - e l  + 4___4_.__ 
(1 + el)(1 + e2) el + e2 

Re x sh~nx--elsh~' ,~(I--x)  exp 2 (w~ *), 
n=l ~ sh I.tn 

r 

ra(x , ~, T)-- 481e2 Re x sh]z~(x--~) exp(~]~)-]- (12) 
el + ~2 n=l sh~m 

+ 4 . R e ~  e l s h ~ ( 1 - - ~ ) c h ~ x + e 2 c h v , ~ ( 1 - - ~ ) s h ~ x  exp(~T), 
el -+- e2 sh ~n r L ~ l  
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and the functions ~R(~) = ~(T) + elf(i); ~R(T) = ~(T). Here ~n = an +-iBn(an, ~n > 0; 
i = /-----f; n = i, 2, ...) is the countable set of complex roots of the characteristic equa- 
tion 

1 + (e~ + e~) ch p + e~s~ = O. ( 1 3 )  

We analyze the stability of the solution: (ii), (12) by means of the spectrum of eigen- 
values of the heat-conduction problem, i.e., the roots of its characteristic equation (13). 
The resulting solution will be stable if the values of all the roots ~n satisfy the condition 
~n < ~n [8]. An analysis of the roots of Eq. (13) shows that a n = a (n = i, 2, ...), and 
so the satisfaction of the condition a < ~l is sufficient in order for the solus to be 

stable for ~, < 62 < ... < ~n < .... 

We now consider the behavior of the solution (ii), (12) as a function of the possible 
choices of the parameters e i (i = i, 2). Figure 1 shows the values of the roots of the char- 
acteristic equation of the problem with variation of the quantity e I. We note that the 
variation of the roots as a function of e 2 is similar, owing to the symmetry of Eq. (13) 
with respect to the parameters. It is evident from the graphs that the real parts of the 
roots of Eq. (13) grow without bound if the values of gi are chosen to be close in absolute 
value and of opposite sign, and also in this case 

lirn ~ = oo, 
~-e~-~0 

indicating the absence of a classical continuous solution for the problem (3), (4), (8), 
(9) in this situation. Consequently, the choice of parameters sz = -~= is unacceptable. 
Also inadmissible is the situation where at least one of the parameters is gi = -I, since 
the existence of the root zero of Eq. (13) causes the influence functions T~,= to have the form 

Y~ (x, x) --- a~ (x) + b~ (x) x + 2 Re ~ A~ (x, p~) + "~B~ (x, p~) 
n=x exp-~ (P~') ' 

where ai, b i, A i, and B i are known functions. Consequently, lim T i = ~ (i = i, 2) for ~l = 
T->oo 

-i, and lim T 2 = ~; b i = 0 for ~2 = -I, making it impossible to satisfy the optimality cri- 
T->oo 

terion (i). 

We denote 

A ( 0  = - -  

~t can be shown on the basis of Eq (13) that for any pair of values I~l < i, I~=I > 1 and 
l~l > i, I~21 < 1, corresponding to the condition - 1 < A(~) < 1, the real part of all the 
roots c~ n = u = 0, and the imaginary part An> 0~ n = i, 2, .... Consequently, the solution 

(ii), (12), has a stable exponential character for such a choice of the parameters ~j, and 
also for the case where at least one of them gj = i, j = i, 2 [A(E) = 1] and the roots ~n = 

iX n are two-valued. 

In cases where: a) lejl < 1 (j = i, 2), al + e2 > 0 (Fig. la); b) gj > 1 (Fig. Ib); c) 
!E" I > i, e I + e 2 < 0, sign~ 1 ~ signe2 (Fig. ib), the roots ~n = an-+i~n are complex valued 

3> 0, 8n = (2n -I)~, n = i, 2, ...], and the solution ~s(x, ~) will be stable under the 
condition a <_ 81. Straightforward transformations of Eq. (13) can be used for ~l = ~ to 
replace this condition by its equivalent 1 < A(~) <_ cosh~. If the latter condition is sa- 
tisfied, the solution (Ii), (12) will be stable and oscillate with a decaying amplitude. 

For all choices of the parameters ej other than the above-described combinations, the 
real and imaginary parts of the roots ~n are equal to a n = ~ > 0, ~n = 2~(n -i), n = i, 2 .... 
The first root ~l = a is real, and so the condition a < 81 is not satisfied, making the 

solution unstable. 

The hatched regions in Fig. 2 show where the solution Tg(x, T) is unstable if the values 
of the parameters ej (j = i, 2) are chosen in those regions. 

It follows from the foregoing analysis of the spectrum of eigenvalues of Eq. (13) that 
the condition for stability of the solution (ii), (12) can be written in the form 

-- I < A (8) ~ chrc. (14) 
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Fig. 3. Solution of the thermal regime control prob- 
lem for a plate, i) Relative temperature of treated 
surface Te(0, ~)/T0; 2) relative temperature of hea- 
ted surface Te(l, ~)/T0; 3) control function ue(T)/ 
To; t2'(T) = t=(~)/T0; ~'(r) = ~(r)/T0 • A'T = 
~T/T0 = 0.i ( -0.4 T); H = 8; m' = ~/T 0 (all dimen- 
sionless quantities), a) e I = 0.5, e 2 = 0; b) 0.i, 0; 
c) 0.i, 0.25. 

We denote the stability domain by ~14, where ~q is the domain of definition of the pair (e I , 
e 2) subject to condition (q). Then the solution is stable for a pair of parameters corres- 
ponding to a point (el, e2)6~i~ in the part of the coordinate plane shown in Fig. 2. 

It can be shown on the basis of the solution (11), (12) that 

lira T~(O, T) = ~(T). 

Since the solution Te(k, Y) ~ ~(~) as the parameters ej (ji = f I, 2) are decreased, the admis- 
sible deviation A T limits their maximum possible values, those values are exceeded, the 
optimality criterion (i) is not satisfied. On the other hand, the amplitude and frequency 
of the oscillations of the solution grow with a decrease in the values of 8j, and this can 
lead to violation of the control constraints (6). These constraints therefore determine 
the minimum attainable values of ej. Accordingly, any pair of parameters (el, ea)E~ = ~iN 
~6N~I~ satisfies the stated control problem. But if the set ~ = #, the problem is uncon- 
trollable under the given conditions. 

We illustrate the application of the proposed method in the following example. The 
heating of a plate is controlled by the convective heat-transfer process (2). It is required 
to heat the thermally insulated opposite surface, @(~) = 0, from the initial state f(x) = 0 
to the temperature 0.6T 0 at the rate e, i.e., to ensure satisfaction of the condition ~(T) = 
~T. The following are specified here: A T = 0.1T0(l - 0.4~); t1(T) = 0; t2(~) = ~(~) + 0.5 
To; ~ = T 0. 

Figure 3 shows the results of an approximate numerical solution of this problem by a 
finite-difference procedure [i0] using parametric regularization. It is evident from Fig. 
3a that the solution Ts(x , ~) does not satisfy the optimality criterion (i) in the first 
case. With a decrease in e I (Fig. 3b) the deviation &T corresponds to the prescribed error 
limits, but the value of the parameter e I is close to the minimum admissible for stability 
(see Fig. 2), and the large oscillations of the control function fail to ensure satisfaction 
of the constraint (6). The use of two parameters (Fig. 3c) makes it possible for the solu- 
tion Te(x , T) to satisfy the constraints on the error of approximation to the function ~(T) 
and on the amplitude of the oscillations of the control function. 

NOTATION 

x, space coordinate; ~, time; AT, admissible technological error; T(x, ~), temperature 
field; H, heat-transfer coefficient; u(T), control function; rl,2, inside and outside radii 
of body; si,2, regularization parameters; TI,2,3, influence functions; ~n, roots of charac- 
teristic equation; ~q (q = i, 6, 14), domain of regularization parameters for satisfaction 
of condition (q); ~, heating rate. 
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V. L. RVACHEV'S QUASI-GREEN'S FUNCTIONS METHOD 

IN THE THEORY OF HEAT CONDUCTION 

M. D. Martynenko and E. A. Gusak UDC 517.947.43 

We present a generalization of V. L. Rvachev's method of quasi-Green's func- 
tions in connection with the solution of mixed problems for the heat-conduc- 
tion equation in noncylindrical domains. 

Let ~ be a domain in a space of n + i dimensions (n = 2,t~), the boundary 8~(StQ + S t , + 
S B) of which is represented by the normalized equation m(P, = 0, where P is a polnt with 
the coordinates (xl, x2, ..., xn). We assume that ~(P, t) is twice continuously differen- 
tiable with respect to the spatial coordinates and once continuously differentiable with 
respect to t; moreover, ~(P, t) > 0 for all (P, t)E~/8~ [i]. 

In the domain ~ we consider the problem of finding a solution of the heat-conduction 
equation 

Lu = [ L = A a ~ Ot (1 )  

satisfying the conditions 

"1 ~,. -- o, (2 )  

~=~.  -- o. (3 )  

It was shown in [2] that an arbitrary solution of the heat-conduction equation (I), 
twice continuously differentiable with respect to (x I ..... x n) and continuously differen- 
tiable with respect to t, can be represented in the following form: 

(0o) . ~. ~t . - l )~  Ou u dS'dt'  + 
u(P ,  t ) - -  a')oj  .st: J V On' On" 

(~) 

~'-~)( �9 v Lu d~'dt', + S + S ,;; CS ':!; 6to "to Gt" 

where 

V. I. Lenin Belorussian State University, Minsk. 
Zhurnal, Vol. 51, No. 4, pp. 673-676, October, 1986. 
1985. 

( i )n0xp( r2)�9 
v = 6(P,  P ' ,  t, t') = 2a ] / ~ t ' )  4a ~  ; 
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